

Neutron Detectors for the Initial Instrument Suite at the European Spallation Source

Richard Hall-Wilton

Leader of Detector Group Deputy Division Head of Instrument Technologies

Update on Status of ESS

Lund Pos-scandinavia, eu & uuu, uebblaneror, se

Webbkameror.se

EUROPEAN SPALLATION SOURCE

The ESS site 2011

ESS construction 18 May 2017

Central Utilities Building (CUB)

West sector (160 m) Instruments

1

Construments

No. of the lot of the

LINAC

Target

NEEDIN TOP

South sector Instruments

Site

May 2017

ESS Neutron Instrument positions: December 2016

EUROPEAN SPALLATION SOURCE

Neutron Beam Instrument Draft Schedule

V2.0, 2nd November 2016

EUROPEAN SPALLATION SOURCE

Neutron Instruments: Phase 1 schedule

2016-17		Jul	Aug	Sep	Oct	Nov	De	ec	Jan	F	eb	Mar	Apr	N	/lay	Jun
LOKI (P2)																
SKADI				29	3							10				
ESTIA		20					9									
FREIA		20			17											
NMX (P2)																
MAGIC																
HEIMDAL					19				31							
DREAM					31											13
BEER			(8			1	4								
ODIN	STA	Р			14					7						
C-SPEC		ne-setti	ng		5						24					
BIFROST												2				
MIRACLES	- IG2															
T-REX				6/	12							24				
VESPA				2-13,	21	П										
				÷	28 27							8				
			I	KON11	ICB	SAC	COUNC	IL		IKON	12			ICB	SAC C	COUNCIL

2019/2020: NSS Proposed Access Dates (Excludes Full Access Dates)

SKANSKA ESS

Update on Status of ESS Detectors

Challenge for Rate

Requirements Challenge for Detectors for ESS: beyond detector present state-of-the art

EUROPEAN SPALLATION SOURCE

Resolution and Area Requirements

Facilities

Custom

- •ESS Facility, co-located with Linkoping University for synergies in expertise and facilities
- Just moved across the road to location available until 2025
- Industrial coatings machine and production line setup
- Capacity: several times ESS needs
- •Capacity: >1000m2/year coated with 10B4C
- If interested in coatings: contact us
- Please give feedback!

Detector Workshop

MultiGrid and Multiblade

$${}^{10}B + n \rightarrow {}^{7}Li^{*} + {}^{4}He \rightarrow {}^{7}Li + {}^{4}He + 0.48MeV\gamma \text{-ray} + 2.3 MeV \quad (94\%) \\ \rightarrow {}^{7}Li + {}^{4}He + 2.79MeV \quad (6\%)$$

Efficiency limited at ~5% (2.5Å) for a single layer

EUROPEAN SPALLATION SOURCE

- Single layer is only ca.5%
- Calculations done by many groups
- Analytical calculations extensively verified with prototypes and data
- Details matter: just like for ³He
- Multilayer configuration (example):

2

6

8

10

wavelength (A)

12

14

16

18

20

 3 He tubes – 1 inch – 4.75 bar

Efficiency Optimizations

EUROPEAN SPALLATION SOURCE

Layer thicknesses in MG.CNCS (16 blades): 7 blades 0.5μm, 7 blades 1.0μm,

3 blades 1.5µm

Would like to test:

Proposed for a thermal detector (20 blades):

4 blades 1.0μm,

- 10 blades $1.25 \mu m$,
- 6 blades 2.0µm.

Efficiency as a function of wavelength for MG optimized for cold vs. thermal spectrum

- Cold optimization centered on 4Å
- Thermal optimization centered on 1Å

Time-of-Flight Spectrometers at ESS

- First 16 instruments chosen
- 3 ToF spectrometers for ESS
- CSPEC and T-REX design phase
- VOR accepted proposal
- Multi-Grid as baseline detector technology

Instrument	C-SPEC	T-REX	VOR
Sample – detector	3.5 m	3 m	3 m *
Detector height	3.5 m	2.2 m	3 m *
Detector area	29 m ²	21 m ²	37 m ² *

*preliminary

brightness

EUROPEAN SPALLATION SOURCE

CSPEC at ESS

Cold spectrometer 0.2 meV < E_i < 20 meV 29m² detector Horizontal coverage 5° to 135° Vertical coverage -25° to 25°

EUROPEAN SPALLATION SOURCE

Multi-Grid Detector Design

example from LET@ISIS aim: replace He-3 for this Time-of-flight (µs) x 10⁴ 10 2 B B = 5 meVа Elastic signal E = 1.5 meV 10^{4} $E_i = 0.7 \text{ meV}$ counts (µs) 10³ 10² • Very background prompt sensitive technique pulse 101 inelastic signal

 Designed as replacement for He-3 tubes for largest area detectors

CRIS

for Syneroles in Physics

- Cheap and modular design
- Possible to build large area detectors again
- 20-50m² envisaged for ESS

Introduction

ILL:

Bruno Guerard, Jean-Claude Buffet, Jean-Francois Clergeau, Anthony Leandri

ESS:

Anton Khaplanov, Fatima Issa, Richard Hall-Wilton, Oliver Kirstein, Tomasz Brys, Michail Anastasopoulos, Isaak Lopez Higuera, Richard Bebb, Sara Arranz, Carina Höglund*, Linda Robinson*, Susan Schmidt*

Centre for Energy Research (Hungary): **Eszter Dian**

Linköping University: Jens Birch, Lars Hultman, (also *)

SNS: Ken Herwig, Georg Ehlers, Michelle Everett, Kevin Berry

Earlier – the participants of the CRISP project on Large-Area detectors.

Horizon 2020 grant agreement 676548

WP 4.3: Large-Area Detectors

Previous publications:

B4C layers:

*C. Höglund et al, J of Appl. Phys. 111, 104908 (2012)

Characterization:

*A. Khaplanov et al., arXiv:1209.0566 (2012)

*B Guerard et al., NIMA, 720, 116-121 (2013), http://dx.doi.org/10.1016/ j.nima.2012.12.021iJ

*J. Correa et al., Trans. Nucl. Sc. (2013), DOI: 10.1109/TNS.2012.2227798 *A. Khaplanov et al., (2014) J. Phys.: Conf. Ser. 528 012040 doi: 10.1088/1742-6596/528/1/012040

Gamma sensitivity:

*A. Khaplanov et al., JINST 8, P10025 (2013), arXiv:1306.6247 Alpha background:

*A. Khaplanov et al., JINST 10, P10019 (2015); doi: 10.1088/1748-0221/10/10/P10019

Current work:

A.Khaplanov et al. "Multi-Grid Detector for Neutron Spectroscopy: Results Obtained on Time-of-Flight Spectrometer CNCS" https://arxiv.org/abs/1703.03626 2017 JINST 12 P04030

Multi-Grid test at CNCS

Installation completed Detector inaccessible for next 6 months

- Test side-by-side with existing technology in world leading instrument
- Realistic conditions
- "Science" or application performance
- 2 different technologies on the same instrument

B10 Multi-Grid Detector Performance is equivalent to that of He-3 detectors

A.Khaplanov et al. *"Multi-Grid Detector for Neutron Spectroscopy: Results Obtained on Time-of-Flight Spectrometer CNCS"* <u>https://arxiv.org/abs/1703.03626</u> 2017 JINST 12 P04030

Construction of MG.CNCS in Lund

EUROPEAN SPALLATION SOURCE

brightness

Operation since 2016-07-14

Multi-Grid test at CNCS

brightness

Methods Used for Tests

channel number

EUROPEAN SPALLATION SOURCE

brightness

Layer #

Allowing to measure:

Energy resolution, efficiency, scattering, background sensitivity, saturation

Results of CNCS Test

- Operation with no access for 11 months, until end May.
- Essential demonstration. MG is now the baseline detector for CSPEC and T-REX
- Energy resolution, efficiency, backgrounds shown to be comparable between MG and He3.
- Better performance in high rate in Multi-Grid
- JINST paper, 2017 JINST 12 P04030 <u>https://arxiv.org/abs/1703.03626</u> for all results

Thanks to the colleagues at SNS for this opportunity and cooperation! These results would not be possible without you! 829092 [nucl-ex] 10 Mar 2017

PREFARED FOR SUBMISSION TO JINST

Multi-Grid Detector for Neutron Spectroscopy: Results Obtained on Time-of-Flight Spectrometer CNCS

M. Anastasopoulos,^a R. Bebb,^a K. Berry,^b J. Birch,^c T. Bryś,^a J.-C. Buffet,^d J.-F. Clergeau,^d P. P. Deen,^a G. Ehlers,^c P. van Esch,^d S. M. Everett,^b B. Guerard,^d R. Hall-Wilton,^{a,f}

K. Herwig,[#] L. Hultman,^{*} C. Höglund,^{#,*} I. Iruretagoiena,[#] F. Issa,[#] J. Jensen,^{*} A. Khaplanov,

^{a,1} O. Kirstein,^{a,k} I. Lopez Higuers,^a L. Robinson,^a S. Schmidt,^{a,c} I. Stefanescu,^a

"European Spallation Source, P.O Box 176, SE-22100 Lund, Sweden

^bInstrument and Source Division, Spallation Neutron Source, 1 Bethel Valley Road, Oak Ridge, TN 37831 6476, USA

"Linköping University, Thin Film Physics division, JFM, SE-581 83 Linköping, Sweden

^dInstitute Laue Langevin, 71 avenue des Martyrs, FR 38042 Grenoble, France

^{*}Quantum Condensed Matter Division, Spallation Neutron Source, J Bethel Valley Road, Oak Ridge, TN 37831 6175, USA

¹Mid Sweden University, SE 85170 Sandsvall, Sweden

*Instrument and Source Division, Spallation Neutron Source, 1 Bethel Valley Road, Oak Ridge, TN 37831-6466, USA

^hSchool of Mechanical Engineering, University of Newcastle, Callaghan, Australia

E-mail: Anton.Khaplanov@esss.se

ABSTRACT: The Multi-Grid detector technology has evolved from the proof-of-principle and characterisation stages. Here we report on the performance of the Multi-Grid detector, the MG.CNCS prototype, which has been installed and tested at the Cold Neutron Chopper Spectrometer, CNCS at SNS. This has allowed a side by side comparison to the performance of He 3 detectors on an operational instrument. The demonstrator has an active area of $0.2m^2$. It is specifically tailored to the specifications of CNCS. The detector was installed in June 2016 and has operated since

EUROPEAN SPALLATION SOURCE

Multi-Grid test at CNCS

Next Steps:

- Data analysis still ongoing
- "Thermal" instrument demonstrator planned
- In past couple months, have visited 4SEASONS@JPARC, DIN-2PI@IBR2 and SEQUOIA@SNS to investigate feasibility and interest
- Services, vacuum, etc under design
- Integration into instrument design
- Design for CSPEC and TREX started

Neutron Reflectometry: A Rate Challenge

EUROPEAN SPALLATION SOURCE

- Rate requirements is high:
 - Intensity of new sources
 - •Time structure of pulse
 - Advanced design instruments

air–D2O.txt Δθ/θ=4%, WFM OFF

Multi-blade design: • High rate capability • Sum-mm resolution

Efficiency

<u>Counting rate capability</u>

Mask

Raw image from the detector

Mask

Raw image from the detector (log scale)

A very first look at fast neutrons

Mittuniversitetet

MID SWEDEN UNIVERSITY

ï

5000

Cf-256

PuBe

Co-60

AmBe

6000

ESS requirements

Matching

	Multi-Blade 2013	Multi-Blade 2016	
gas gain	58	$20 \perp 3$]
efficiency	$(26 \pm 0.2)\%$ at $(10^{\circ}, 2.5\text{\AA})$	44% at $(5^{\circ}, 2.5\text{\AA})$ (calculated) (56 ± 2)% at $(5^{\circ}, 4.2\text{\AA})$ (65 ± 2)% at $(5^{\circ}, 5.1\text{\AA})$	
spatial resolution	$\approx 0.3 \times 4 mm^2$	$pprox 0.5 imes 2.5 mm^2$	x3 better than
uniformity	$\leq 2\%$	$\leq 10\%$	state-or-the-art
overlap	$\approx 50\%$ eff. drop in $2mm$ gap	$\approx 50\%$ eff. drop in $0.5 mm$ gap	
stability		< 1% in 12h]
counting rate capability		$> 1.6 KHz/mm^2$	x10 better than
	-	> 16.6 KHz/channel	state-of-the-art
gamma sensitivity		$< 10^{-7}$	
		(for 100 KeV threshold)	

new detector built (2 copies):

1 in Lund, 1 in Wigner (HU)

First test of electronics+detector will take place at BNC next week The new detector is going to be tested this year on a Reflectometer (ISIS, maybe at ILL)

MB-16

Planarity is an issue on large surfaces on Al

Statement of the second second

insummer and a subset of the second

CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWN

Detectors for ESS: strategy update for 16 instruments

Instrument class	Instrument sub- class	Instrument	Key requirements for detectors	Preferred detector technology	Ongoing developments (funding source)	
	Small Angle	SKADI	Pixel size, count-rate,	Pixellated Scintillator	SonDe (EU SonDe)	
Large-scale	Scattering	LOKI	area	10B-based	BandGem	
structures	Poflactomatry	FREIA	Divelsize count rate	10P based	MultiPlada (ELL PrightnESS)	
	Reflectometry	ESTIA	Pixel Size, count-rate	TOD-Dased	Multiblade (EO Brighthess)	
	Powder diffraction	DREAM	Pixel size, count-rate	10B-based	Jalousie	
Diffraction		HEIMDAL		10B-based	Jalousie	
	Single-crystal	MAGIC	Pixel size, count-rate	10B-based	Jalousie	
	diffraction	NMX	Pixel size, large area	Gd-based	GdGEM uTPC(EU BrightnESS)	
Engineering	Strain scanning	BEER	Pixel size, count-rate	10B-based	AmCLD, A1CLD	
	Imaging and tomography	ODIN	Pixel size	Scintillators, MCP, wire chambers		
	Direct geometry	C-SPEC	Large area		MultiGrid (EU BrightnESS)	
		T-REX	(³ He-gas unaffordable)	10B-based		
Spectroscopy		VOR				
	Indirect geometry	BIFROST	Count-rate	3Ho-based	He-3 PSD Tubes	
		MIRACLES		5116-00360	He-3 PSD Tubes	
		VESPA	Count-rate	3He-based	He-3 PSD Tubes	
SPIN-ECHO	Spin-echo	tbd	tbd	3He-based/10B-based		

Good dialogue and close collaboration needed for successful delivery and integration

Detector Baseline for Early Instruments (2017)

Instrument	Installation Start (est.)	Lead Institute	Main Detector Technology	Main Detector Developer	Front End Readout	FE Readout Developer	Integration Model
	01 2019	2121	BandGEM	Milan	Gemma/Gemini	Milan/INFN	B/X
		1515	B10 Straws	ISIS (PT Inc)	VMM	ISIS/STFC/ESS	А
NMX	Q1 2019	ESS	Gd-GEM	CERN/ESS (BrightnESS)	VMM	CERN/ESS (BrightnESS)	A/X
ODIN	Q3 2019	TUM/PSI	MCP, Silicon, etc	Lots	Lots	Lots	x/xx
BEER	Q4 2019	HZG/NPI	A1CLD, AmCLD	HZG/DENEX	Delay Line	HZG/DENEX	Probably C
SKADI	Q4 2019	FZJ/LLB	SoNDE Pix Scinit	SoNDE	IDEAS ASIC	SoNDE	Probably B
DREAM	Q4 2019	FZJ	Jalouise	Julich/CDT	CIPix	CDT	B/C
ESTIA	Q1 2020	PSI/ESS/LU/HU	Multi-Blade	Wigner/ESS (BrightnESS)	VMM	ESS Led (IK + BrightnESS)	А
C-SPEC	Q2 2020	ESS/TUM/LLB	Multi-Grid	ILL/CERN (BrightnESS)	VMM	ESS Led (IK + BrightnESS)	А
CAMEA/BIFROST	Q1 2021	DTU	He3 Tubes	Commercial	Commercial?	Commercial?	Probably X/XX
HEIMDAL	Q1 2021	PSI/DK/NO	Jalouise	Julich/CDT	CIPix	CDT	B/C
FREIA	Q3 2021	ISIS	Multi-Blade	Wigner/ESS (BrightnESS)	VMM (MB)	ESS Led (IK+ BrightnESS)	А
T-REX	Q4 2021	ESS/FZJ	Multi-Grid	ILL/CERN (BrightnESS)	VMM	ESS Led (IK+ BrightnESS)	А
MAGIC	Q4 2021	FZJ/CDT/LLB	Jalouise	Julich/CDT	CIPix	CDT	B/C
MIRACLES	Q1 2022	ESS-B	He3 Tubes	Commercial	Commercial?	Commercial?	Probably X/XX
VESPA	Q3 2022	CNR	He3 Tubes	Commercial	Commercial?	Commercial?	Probably X/XX
VOR??	???	ESS/WIGNER	Multi-Grid	ILL/CERN (BrightnESS)	VMM	ESS Led (IK+ BrightnESS)	А

Preferred Detector Technologies for Baseline Suite

Detectors for ESS will comprise many different technologies

Schedule: Where are we for detectors?

Detector schedule is longer than the instrument build schedule "Converter" "Detector" "Electronics"

Coatings		Prototype Designs	Strategy for	workshops and facilities,	Lieetronies	Detector Design
	Detector Conceptual Designs		Instruments, Instrument Designs	Instrument	ICS/DMSC interface	Electronics
	2 00.8.10			Designs	Instrument conceptual design	ICS/DMSC interface
						Construction

2018	2019	2020	2021	2022	2023	2024	2025
Electronics /ICS/DMSC	Design	Construction	Construction	Construction	Installation	Installation	Installation
Design	Construction	Installation	Installation	Installation	Commissioning	Commissioning	Commissioning
Construction	Installation	Commissioning	Commissioning	Commissioning	Operation	Operation	Operation

ESS Partners on Detectors

Summary

Construction is proceeding rapidly

• 15 instruments are entering construction for ESS

• There is a baseline detector design for these instruments

• Developments are proceeding well

