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DETECTING THERMAL NEUTRONS WITH GEMS

 GEMs offer the following advantages

 High rate capability (up to MHz/mm2) 

 Submillimetric space resolution (suited to experiment requirements)

 Time resolution from 5 ns (gas mixture dependent)

 Possibility to be realized in large areas and in different shapes

 Radiation hardness

 Low sensitivity to gamma rays (with appropriate gain)

 GEM detectors born for tracking and triggering applications (detection of 

charged particles)....

 ...but if coupled to a solid state converter they can detect

 Thermal Neutrons  10Boron converter  
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BAND-GEM detection principle
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Alluminium grids coated on both sides with 10B4C

Using low θ values (few degs) the path of the neutron inside the 

B4C is increased  Higher efficiency when detector is tilted
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New BANDGEM detector assembly 
Detector box equipped with three 
diagnostic windows 75 mm x 100 mm
Borated Grids – 0.5 to 0.6 µm of 10B4C



Experimental Setup @ EMMA, ISIS

BAND-GEM 
on turntable

BEAM MONITOR 
GS-20 Lithium Glass Scintillator
ε(1 Å) = 0.6%

n Beam



Experimental Setup Scheme
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Electrical Scheme
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Beam footprint 

ON-pads are defined as pads whose intensity is 
> 1% of the pad with the max intensity 

Beam dimension 4 mm (t) x 4 mm (y)

Colour  = IGEM/Pad Area

n



Working Point determination – V1 scan 

Ѳ = 5°
Beam dimension = 4 mm x 4 mm

• Values up to 15 kV were applied to the cathode thanks to new HV Module 
• Plateau observed for V1> 8 kV
• Working point selected: V1 = 11.1 kV



Working Point determination – V3 scan 

• BAND-GEM detector sensitive to gamma rays (in this case produced by  1mm Cd sheet 
inserted in the beam) for V3 > 900 V (gain > 200). 

• Working Point selected at V3 = 900 V
• Full study of gamma-ray sensitivity to be completed in 2017 using a strong (100 MBq) 

source (e.g. Cobaltissimo @ POLIMI).

Ѳ = 5°
Beam dimension = 4 mm x 4 mm



Relative (bottom/top)
Charge Extraction Efficiency
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Width of lateral diagnostic window = 75 mm

Relative Extraction Efficiency @ Cathode 

Beam entering from the side Ѳ=90°

Considering all ON-pads for ICGEM

calculation

ηC=67% 



Relative Charge Extraction Efficiency

ηC=67% 

Beam entering from side.   z = 0 mm (Cathode); z = 96 mm Grid Top.  Working point as before

ηC=65% ηC=61% 

ηC=55% ηC=37% ηC=0% 



Efficiency (at 1 and 2 A) vs tilt angle

Good agreement with simulated values

d S-D = 10m

d S-D = 5m



Efficiency as a function of λ

• Alpha and Li ion escape efficiency from a 850 nm thick 10B4C layer = 73%

• Assumes the measured extraction efficiency in the simulation model



FWHM vs tilt angle – Space resolution

Good agreement with simulated values
Experimental corrected for offset by about 5 degrees
Effective resolution ~ independent of λ



BANDGEM application @ LOKI, ESS

BANDGEM

Modules

As rear 

detector 

panels

Requirements for rear detector panel

•Rate Capability = 40 kHz/cm2

•Time resolution better than 1 ms

•Efficiency >40% at 4 Å

•X-Y Space resolution of about 6 mm 

Construction of BANDGEM 

full module for LOKI as an 

upgrade of the first 

prototype
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Rear Detector
To cover the required area:

• N.4  45 Degrees detectors

• N.5  36 Degrees Detectors



Converter Grids

Material: Aluminum 

Coating: 850 nm of B4C

Thickness: 3 mm

Thickness of the strips: 

200 um (max)



3D converter assembly
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Sectorized GEM foil and frame 

GEM foil stretched and glued to 

its frame as usual.



ReadOut Anode 



45 degrees Detector: Detector Assembly
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Aluminum frame (thickness: 10 mm)





The Front End Electronics

The first prototype electronics is based on Carioca Chip. Total dimension : 3x6 cm2

Digital Chip with 8 channels
Equips the LHCb GEM detectors
Fast chip – used for triggering
Adapted from MWPC

A new chip is available: the GEMINI chip. 
Mixed analog and digital chip that
Has 16 channels/chip. 
Especially developed for GEM detectors



Conclusions
• Improved construction design using waterjet-cut grids

• Needs very high voltage for operation= 15 kV in total

• Needs to be tilted by about 5 degrees for operation

• Detector response: 
– Efficiency @ 4 A > 40%

– Resolution (FWHM) @ Ѳ = 4° : 6 mm

• Competivite for SANS (Small angle neutron scattering 
applications)

• “Full module” for LOKI designed; under construction



SPARE SLIDES



Nominal 1 µm of 10B4C DEPOSITION @ ESS Workshop (Linkoeping)

B4C thickness 600 nm in center, 500 at edge 
measured @ Linkoeping University using SEM



Detector Anodic Pads – 5x10 cm2 active area

• Three different types of pads
representative of final geometry
• Small 4x3 mm2

• Intermediate 4x6 mm2

• Large 4x12 mm2

• 64 BANDGEM pads (half detector) 
connected to DAE

• For each pad (from 65 to 128) 
DAE-TOF spectra are produced: 

• Single hits
• Multiple hits (channel 

number > 128): more 
than one pad hit in same 
time-bin

• 2 noisy pads

Noisy Pads

Large

Intermedate

Small



Time of Flight Spectra – EMMA 1 Å < λ < 4 Å

Monitor Efficiency previously 
calibrated using 3He tube

t=4ms

λ(Å) TOF (µs)

1 4000

2 8060

3 12560

4 17060ε1 = ε(1 Å) = 0.6%
Error: 10%
ε(λ) = ε1 * λ



Working Point determination – V2 scan 

Ѳ = 5°
Beam dimension = 4 mm x 4 mm

• Counting rate depends weakly on the field between the 3DGrid and the first GEM foil
• Working point selected: V2 = 1500 V



Absorbed fraction at each step
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p(x) = 

p     0 mm <x < 4 mm (GAP 1)

p*(p^2 -3p +2)  4 mm <x < 8 mm (GAP 2)

p*(-p^3 + 3p^2 -3p +1) 8 mm <x < 12 mm (GAP 3)

FWHM ESTIMATE (2) 



Detector overview
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45 degrees Detector: Tilting system
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Vacuum Box (reference 

plane orthogonal to the 

beam 

direction)

Aluminum frame bolted to the 

vacuum box surface 

(thickness: 10 mm). 


