WP9 Intrumentation: Detector Meeting, 28th May 2019, Bilbao

Task 9.4.1 Emergent Detector Technologies for Neutron Scattering and Muon Spectroscopy

Development of Resistive Plate Chambers (RPCs)

Luís Margato, A. Morozov, A. Blanco, P. Fonte, L. Lopes

K. Zeitelhack

R. Hall-Wilton, L. Robinson, Chung-Chuan Lai, I. Stefanescu, Per-Olof Svensson Past contributors: C. Höglund and Susann Schmidt

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654000

Outline

Double-gap ¹⁰B-RPC sensitivity to gamma rays

□ Progress in ¹⁰B-RPC development within SINE 2020

Given Setup Setup

Double-gap ¹⁰B-RPC

Plateau shift: cosmic muons (MIPs) versus thermal neutrons

Experimental setup: RPC plateau for cosmic muons (MIPs)

Double-gap ¹⁰B-RPC

Plateau shift: cosmic muons (MIPs) versus thermal neutrons

Double-gap ¹⁰B-RPC

Plateau shift: cosmic muons (MIPs) versus thermal neutrons

Energy loss in the working gas

Minimum ionizing particles (MIPs)

Gas	Density (1 atm, 20ºC)	l	dE/dx	Np
	(g/cm³)	(eV)	(keV/mm)	[cm ⁻¹]
C ₂ H ₂ F ₄ (R134a)	4.24 x 10 ⁻³	95.029	0.7482	81.6

[arXiv:1505.00701v1 [physics.ins-det]]

⁴He and ⁷Li fission fragments

Energy deposited in the RPC gas-gap computed with GEANT4

Double-gap ¹⁰B-RPC: sensitivity to gamma rays

Experimental setup: gamma sensitivity for the 0.511 MeV gamma rays

6

Energy windows are set by the TSCAs

Double-gap ¹⁰B-RPC: sensitivity to gamma rays

Experimental setup: gamma sensitivity for the 1.27 MeV gamma rays

Experimental results

Sensitivity to 0.511 MeV and 1.27 MeV gamma rays

MC Simulations

- Geant4 10.5.1 with QGSP-BERT-HP reference physics list
- Tests with other relevant physics lists (QGSP-BIC-HP and QGSP-BIC-AllHP): showed nearly identical results

Detector model

- Double-gap ¹⁰B-RPC inside in an Al box
- Al-cathode coated (both sides) with 1.15 um thick ¹⁰B₄C layer (97% enrichment)
- Area:10x10 cm²

Two RPC designs were simulated

	Original	Modified
Gas-gap width	0.35 mm	0.2 mm
AI plate thickness	0.5 mm	0.3 mm
Glass plate thickness	0.5 mm	0.25 mm

Distribution of the energy deposited in the RPC gasgap by the reaction products of neutron capture in ¹⁰B for the **"Modified design"**

 $5\ x10^5$ neutrons (1.8 Å) were sent in a pencil beam perpendicular to the RPC

Double-gap ¹⁰B-RPC: sensitivity to gamma rays

10⁷ gammas were sent in a pencil beam perpendicular to the RPC for each energy (511 keV and 1.27 MeV)

Fractions of primaries resulting in energy deposition in the gas-gaps for a energy threshold of 20 keV

Commo oporav	RPC design		
Gamma energy	Original	Modified	
0.511 MeV	6×10 ⁻⁶	~1×10 ⁻⁶	
1.27 MeV	8×10 ⁻⁶	~1×10 ⁻⁶	

Work in progress

□ High rate ¹⁰B-RPCs: prototypes with low resistivity electrodes are being assembled for beam tests

Plate of low-resistive silicate glass

Bulk resistivity ~10¹⁰ Ω .cm)

[J. Wang et al., Nucl. Instrum. Meth. A 713 (2012) 40]

$$V_{eff} = V_{ap} - IR = V_{ap} - \left(\frac{I}{A}\right)\rho l$$

 V_{eff} : Effective voltage applied across the gap

- V_{ap}: Applied voltage,
- I: Counting current drawn by the detector in area A
- R: Electrical resistance seen by this current
- P: DC bulk resistivity of the electrode resistive material

Plates of ceramics composite provided by L. Naumann, Forschungszentrum Dresden-Rossendorf

Bulk resistivity of the plates prepared for tests: $8.6\times10^7~\Omega.cm$; $1\times10^8~\Omega.cm$ and $2\times10^{10}~\Omega.cm$

[A. Laso Garcia et al., Nucl. Instrum. Meth. A 818 (2016) 45]

¹⁰B-RPC status before SINE 2020

- Single-gap RPC in a hybrid configuration
- RPC cathode (AI) coated with 2um thick layer of ¹⁰B₄C at the ESS Detector Coatings Workshop

RPC Prototype developed in the Framework of an Exploratory Project Funded by FCT

- The first prototype assembled in LIP and tested at ILL
 - Sensitivity to thermal neutrons demonstrated
 - Sub-millimeter spatial resolution observed (0.8 mm FWHM)

□ Single-gap RPCs with different gas-gap widths (0.35 mm and 1 mm) tested

□ For 2D position sensitivity a new scheme for signal pickup electrodes implemented

Each strip is readout by a charge sensitive amplifier

- Vertical strips (X)
 - Pitch = 1.5 mm
 - Width = 1.3 mm
- Horizontal strips (Y)
- Pitch = 2.0 mm
- Width = 0.5 mm

D Prototypes tested at FRMII/ TREFF neutron beam line (λ = 4.7 Å)

- Both RPCs showed a wide plateau
- Detection efficiency (single-gap) ≈ 12.5%
- The new 2D readout scheme is feasible
- Thinner gas-gap shows higher spatial resolution and requires lower voltage
- Spatial resolution better than 250 µm FWHM demonstrated for both coordinates (x,y)

Multilayer architecture introduced to address low detection efficiency

□ A prototype with 10 double-gap ¹⁰B-RPCs (20 layers of ¹⁰B₄C) was build at LIP and tested at FRMII/ TREFF neutron beam line

Det. Efficiency (λ= 4.7 Å) > 50%

Spatial resolution < 250 µm FWHM</p>

3D-positions of reconstructed neutron events

□ Towards ¹⁰B-RPC detector with high counting rate

Optimization of individual thicknesses of converters layers (semi-automatic optimization tool of ANTS2)

□ Analysis of materials impact on detector performance

Neutron absorption and scattering in the Multilayer RPC detector materials (10 double gap ¹⁰B-RPCs)

Future

□ Increase the counting rate capability

- Detector design optimization
- Low resistivity materials for RPC electrodes
- Front end electronics with higher sensitivity
- Effect of the temperature

Reduce sensitivity to gamma rays

- Optimize geometry and materials
- Pulse shape analysis for MIPs and HIPs
- □ Improve spatial resolution and uniformity
 - Statistical reconstruction

Thank you for your attention

Counting Rate

Counting rate improvement

- Low resistivity materials: e.g. Ceramics, doped glass, PEEK loaded with Carbon ($\rho = 1-3 \times 10^9 \Omega$.cm)
- Thinner resistive electrodes
- Increase the temperature (glass resistivity decreases)
- Front end electronics with higher sensitivity
- Avalanche mode

Counting Rate

Ceramic high-rate timing RPCs

L. Lopes^a, R. Ferreira Marques^{a,b}, P. Fonte^{a,c,*}, L. Hennetier^d, A. Pereira^a, and A.M. Sousa Correia^d

Counting Rate

Other materials with lower bulk resistivity => higher counting rate capability RPCs Work in progress @ LIP-Coimbra in the framework of a AIDA2020 project

New technology ESD material, Krefine

Experimental results

¹⁰B-RPCs: Single-gap studies - Tests with Neutrons

PHS of the cathode signals (log scale)

Spatial resolution considerations

The good spatial resolution can be explained by:

- Anti-Parallax effect
- The possibility to build RPCs with very thin gas-gaps (down to 0.1 mm)

Distributions of the ⁴He and ⁷Li particle ranges in the gas-gap, projected in the lateral direction (parallel to the RPC plates)

- Neutron wavelength: 1.8 Å
- Gas-gap widths: 0.35, 1.0 and 2 mm
- Gas: C₂H₂F₄ (20°C and 1 atm)

¹⁰B-RPCs: Hybrid Design

Metallic cathodes

- Deposition of ¹⁰B₄C on Al substrates is already a well established technique [1]
- But, 2D-position readout must be implemented on the same plane Resistive anode side

Single-Gap RPC

Signal pick-up strips : X and Y

Signal pick-up strips : X and Y

Advantages of RPCs

- Modular detector designs and good scalability
- Well suited for multilayer architectures
- Good spatial and time resolution (< 1ns)
- Well-established technique (e.g. large area detectors for high energy physics) and low cost per unit area
- Safe detector: current limited by the resistive plates and readout is decoupled from HV

Challenges

- Low thermal neutron detection efficiency of single neutron converter layers
- Gamma sensitivity and counting rate

[1] Carina Höglund et al., Stability of ${}^{10}B_4C$ thin films under neutron radiation, Radiation Physics and Chemistry, Vol. 113 (2015) Pg. 14–19.

RPCs – Resistive Plate Chambers

Typical gas mixture:

- Freon R134a (tetrafluoroethane): high electron affinity (electron capture ⇒ avalanche confinement);
- SF6 (sulphur hexafluoride): 1 to 10% (to suppress streamer discharges);
- C4H10 (Iso-Butane): 0 to 5% (to prevent photon induced streamers.