### Neutron Acceptance Diagram Shading Phil Bentley

# Why?

- New problems in optics often involve optimisation in manydimensional parameter spaces
- May have lots of local optima
- Analytical solutions might not exist

 Nature has solved such optimisation problems already



# Why?

- Particle swarms / genetic algorithms need 100 iterations or more to converge
- Each iteration evaluates 30-50 agents
- Therefore, 3000 simulations minimum

 Either use a cluster or something other than Monte-Carlo



- Complex geometry with many coupled parameters
- SPAN-cryopad



- multi-channel guides IN5
- WASP
- TYREX <sup>3</sup>He polariser (new model)

- Complex geometry with many coupled parameters
- SPAN-cryopad
- multi-channel guides IN5
- WASP
- TYREX <sup>3</sup>He polariser (new model)



- Complex geometry with many coupled parameters
- SPAN-cryopad
- multi-channel guides IN5
- WASP
- TYREX <sup>3</sup>He polariser (new model)



![](_page_5_Figure_7.jpeg)

- Complex geometry with many coupled parameters
- SPAN-cryopad
- multi-channel guides IN5
- WASP
- TYREX <sup>3</sup>He polariser (new model)

![](_page_6_Figure_6.jpeg)

#### Full Optimisations

- Simulate the instrument all the way from moderator to detector
- All parameters free
- Don't care if parameters are strongly coupled
- Parameter limit: >47 but
   <650 with canonical algorithms</li>

![](_page_7_Picture_5.jpeg)

- 100 000 000 trajectories entering the guide
- 666 seconds CPU time (11 minutes) => 74 trajectories hit the sample
- Statistical error = 12%
- 1% error needs 25 hours
- Optimisation of D22: 8-25 years (I cpu)

- 100 000 000 trajectories entering the guide
- 666 seconds CPU time (11 minutes) => 74 trajectories hit the sample
- Statistical error = 12%
- I% error needs 25 hours
- Optimisation of D22: 8-25 years (I cpu)

- 100 000 000 trajectories entering the guide
- 666 seconds CPU time (11 minutes) => 74 trajectories hit the sample
- Statistical error = 12%
- 1% error needs 25 hours < 1 minute</li>
- Optimisation of D22: 8-25 years (I cpu)

- 100 000 000 trajectories entering the guide
- 666 seconds CPU time (11 minutes) => 74 trajectories hit the sample
- Statistical error = 12%
- 1% error needs 25 hours < 1 minute</li>
  Optimisation of Dag 20 minute • Optimisation of D22: 8-25 years (I cpu)

## nads Speed Gain

1.5 x

![](_page_12_Picture_1.jpeg)

http://flickr.com/photos/17393884@N00/5341048/ Flickr

![](_page_12_Picture_3.jpeg)

![](_page_12_Picture_4.jpeg)

#### Similar Problem Solved

- Ray tracing is routinely used in movies
- Very slow! Scenes rendered on huge clusters
- Vector graphics is close to ray trace quality
- 30 frames per second

![](_page_13_Picture_5.jpeg)

#### Similar Problem Solved

![](_page_14_Picture_1.jpeg)

#### Neutron Bunches

- The analogy is to group trajectories into "similar" bunches and treat the group as one single object.
- Bunches are phase space regions with linear relation between trajectories
- How do we separate the bunches so the calculation remains accurate?

#### Guide Reflectivity

- Divide bunches along m=1 and critical m.
- Trajectories within a bunch are linearly dependent
- Guide reflectivity is an idealised curve
- R at m\_crit taken from Swiss neutronics

![](_page_16_Figure_5.jpeg)

#### Acceptance Diagrams

- Define boundaries in distance-divergence space
- Division is on module-by-module basis

#### Source Module

 Just like Monte-Carlo, we have a source plane and a virtual "exit window".  Exit window must be at least as large as subsequent module

• Propagation = shear

![](_page_18_Figure_4.jpeg)

#### Source Module

 Just like Monte-Carlo, we have a source plane and a virtual "exit window".  Exit window must be at least as large as subsequent module

• Propagation = shear

![](_page_19_Figure_4.jpeg)

#### Source Module

 Just like Monte-Carlo, we have a source plane and a virtual "exit window".  Exit window must be at least as large as subsequent module

• Propagation = shear

![](_page_20_Figure_4.jpeg)

#### Collimator/Aperture

- For aperture clip off extrema in space axis
- For collimator, clip off extrema in divergence axis

![](_page_21_Figure_3.jpeg)

#### Collimator/Aperture

- For aperture clip off extrema in space axis
- For collimator, clip off extrema in divergence axis

![](_page_22_Figure_3.jpeg)

#### Collimator/Aperture

- For aperture clip off extrema in space axis
- For collimator, clip off extrema in divergence axis

![](_page_23_Figure_3.jpeg)

## Change Coordinates

- Rotate beam axis
- Translate beam axis
- Both are a translation of phase space volumes

![](_page_24_Figure_4.jpeg)

#### Guide Module

- Kill neutrons that miss the entrance
- Propagate neutrons to the end of the guide
- Divide along m boundaries
- Multiply reflected weight by reflectivity

![](_page_25_Figure_5.jpeg)

#### Guide Module

- Kill neutrons that miss the entrance
- Propagate neutrons to the end of the guide
- Divide along m boundaries
- Multiply reflected weight by reflectivity

![](_page_26_Figure_5.jpeg)

#### Guide Module

- Kill neutrons that miss the entrance
- Propagate neutrons to the end of the guide
- Divide along m boundaries
- Multiply reflected weight by reflectivity

![](_page_27_Figure_5.jpeg)

#### Statistical Weight

- Use triangular primitives
- Statistical weight of a triangle is a volume calculation
- Right-wedge plus square-based pyramid
- Only difficulty is very thin triangles (known problem in CS)

![](_page_28_Figure_5.jpeg)

### Guides Supported

- Straight
- Curved parallel
- Converging
- Diverging
- Arbitrary

![](_page_29_Figure_6.jpeg)

![](_page_30_Figure_1.jpeg)

![](_page_31_Figure_1.jpeg)

![](_page_31_Figure_2.jpeg)

![](_page_32_Figure_1.jpeg)

![](_page_32_Figure_2.jpeg)

![](_page_32_Figure_3.jpeg)

![](_page_33_Figure_1.jpeg)

![](_page_33_Figure_2.jpeg)

![](_page_33_Figure_3.jpeg)

![](_page_34_Figure_1.jpeg)

![](_page_34_Figure_2.jpeg)

![](_page_34_Figure_3.jpeg)

Monday, 17 August 2009

![](_page_36_Figure_1.jpeg)

Monday, 17 August 2009

b

0.2

0.4

![](_page_37_Figure_1.jpeg)

![](_page_39_Figure_1.jpeg)

Monday, 17 August 2009

![](_page_40_Figure_1.jpeg)

![](_page_40_Figure_2.jpeg)

![](_page_41_Figure_1.jpeg)

![](_page_42_Figure_1.jpeg)

Monday, 17 August 2009

#### Test 3:WASP

- Agreement between NADS and MCSTAS on sample
- MCSTAS model Independently calculated by Peter Fouquet from moderator to Sample
- ~5 seconds for nads per wavelength (3 mins for white beam)

![](_page_43_Picture_4.jpeg)

#### Test 3:WASP

- Agreement between NADS and MCSTAS on sample
- MCSTAS model Independently calculated by Peter Fouquet from moderator to Sample
- ~5 seconds for nads per wavelength (3 mins for white beam)

![](_page_44_Picture_4.jpeg)

![](_page_44_Figure_5.jpeg)

## Test 4:

![](_page_45_Figure_1.jpeg)

• Agreement between SIMRES / RESTRAX and nads  $I = \int_{0.7}^{10} \left(\frac{dI}{d\lambda}\right) d\lambda$ 

• Trace  $= \int_{0,\tau}^{10} \left(\frac{d\phi}{d\lambda}\right) d\lambda$  virtual source (M3)

 $\frac{dI}{d\lambda}\Delta\lambda$ 

![](_page_45_Figure_4.jpeg)

 ~40 ms for nads per wavelength (1.7 sec for white beam)

## Test 4:

![](_page_46_Figure_1.jpeg)

• Agreement between SIMRES / RESTRAX and nads  $I = \int_{0.7}^{10} \left(\frac{dI}{d\lambda}\right) d\lambda$ 

• Trace  $= \int_{0.7}^{10} \left(\frac{d\phi}{d\lambda}\right) d\lambda$  virtual source (M3)

 $\frac{dI}{d\lambda}\Delta\lambda$ 

 ~40 ms for nads per wavelength (1.7 sec for white beam)

![](_page_46_Figure_5.jpeg)

![](_page_46_Figure_6.jpeg)

#### For Coders

- nads kernel in C++
- Understands xml input from file or pipe
- xml schema lets you check syntax of handcoded simulations
- Uses getopt with varying degrees of verbosity

- nads -q prints only the output flux
- Fully scriptable using bash / c / mathematica...

```
<module>
    <rotation>
        <elemname>New Rotation Module</elemname>
        <hRotationAngle>0.6</hRotationAngle>
        <vRotationAngle>0</vRotationAngle>
    </rotation>
</module>
<module>
    <convergingGuide>
        <elemname>Separator</elemname>
        <width>8</width>
        <height>12</height>
        <exitWidth>18</exitWidth>
        <exitHeight>12</exitHeight>
        <length>2.77</length>
        <mnumber>3</mnumber>
    </convergingGuide>
</module>
```

#### Live Demonstration

![](_page_48_Picture_1.jpeg)

- 3d instrument visualisation with OpenGL
- Mathematica scripts

#### Limitations

- Each nads calculation is monochromatic (white beam possible via looping)
- Small angle approximation
- Separable vertical & horizontal channels
- Round objects approximated by rectangular objects of equal area (round sources etc)

#### Acknowledgements

#### • ESFRI

- Ken Andersen
- Klaus Habicht (HMI / BLZ)
- Leo Cussen (Cussen Consulting)