

WP6 Macromolecular Crystallogenesis

Background – neutron crystallography can provide crucially important information on biological structure that cannot be obtained any other way – eg protonation states, redox systems, drug-protein interactions, hydration details.

The problem – despite pivotal advances (instrumentation, perdeuteration), requirements for **protein crystal volume** heavily restrict access to the range of biological problems for neutron crystallography.

- Ashley Jordan and Trevor Forsyth: ILL Life Sciences Group, Grenoble
- Marialucia Longo and Tobias Schrader: Juelich
- Zoe Fisher, ESS, Lund

MASSIF @ESRF data showing crystal volumes processed by synchrotron X-ray analyses (courtesy M. Bowler)

WP6 Macromolecular Crystallogenesis

Background – neutron crystallography can provide crucially important information on biological structure that cannot be obtained any other way – eg protonation states, redox systems, drug-protein interactions, hydration details.

The problem – despite pivotal advances (instrumentation, perdeuteration), requirements for **protein crystal volume** heavily restrict access to the range of biological problems for neutron crystallography.

- Ashley Jordan and Trevor Forsyth: ILL Life Sciences Group, Grenoble
- Marialucia Longo and Tobias Schrader: Juelich
- Zoe Fisher, ESS, Lund

Background – neutron crystallography can provide crucially important information on biological structure that cannot be obtained any other way – eg protonation states, redox systems, drug-protein interactions, hydration details.

The problem – despite pivotal advances (instrumental requirements for **protein crystal volume** heavily rest biological problems for neutron crystallography.

- Ashley Jordan an Sciences Group, (
- Marialucia Longo
- Zoe Fisher, ESS, I

Enhanced crystal growth in high magnetic fields

D19

omega scan (0.07° /step) P2₁2₁2₁ (a= 30.64 b=57.02 c=74.53) Estelle with Kay Diederichs (Konstanz). Problems of RETREAT resolved – at least for high res. protein structures.

XDS

Neutron structure refinement: high quality neutron scattering length density maps. 1.9A data at 93% completeness

Microcrystallite alignment

Magnetically aligned

Unaligned

Microcrystallite alignment – opening up the MX histogram

- Access to much wider range of proteins in MX histogram
- Loss of information from cylindrical averaging far less than might be expected
- Data largely 2D in character rapid data collection (1-2 days)
- No phasing problem since X-ray structures are almost always available

Microcrystallite alignment

Cylindrical averaging of crystallites about a principal axis - fibre ordering

Background – neutron crystallography can provide crucially important information on biological structure that cannot be obtained any other way – eg protonation states, redox systems, drug-protein interactions, hydration details.

The problem – despite pivotal advances (instrumentation, perdeuteration), requirements for **protein crystal volume** heavily restrict access to the range of biological problems for neutron crystallography.

- Ashley Jordan and Trevor Forsyth: ILL Life Sciences Group, Grenoble
- Marialucia Longo and Tobias Schrader: Juelich
- Zoe Fisher, ESS, Lund

Introduction

Circular simmetry:

 Uniform and isotrope transmission of the heat into the crystallization chamber.

Central angular opening on the crystallization chamber:

Possibility to apply characterization spectroscopic technique as well.

2.Batch configuration: internal spacer

In and out-put capillary

Holes for pt100 temperature sensors

Stainless steel version of the internal spacer for batch crystallization

3D printed version of the internal spacer for batch crystallization

Possibility to easily have new exchangeable internal spacers

Batch configuration: Filling step

- 1 Avoid bubbles inside the crystallization chamber (filling from the top before closing does not help!).
- 2 Avoid breaking of the windows during the closing of the chamber (close enough to seal but not too much)!

Batch configuration

This project is funded by the European Union (GA no. 654000)

Scientific Summary slide

 First successful test of batch/vapour diffusion crystallization apparatus

 First successful crystallization of a relevant protein: Streptavidin with Biotin – tested on Biodiff

Computer control of crystallization apparatus will allow to offer it to users of BIOD

WP6 Highlights ESS

Background – neutron crystallography can provide crucially important information on biological structure that cannot be obtained any other way – eg protonation states, redox systems, drug-protein interactions, hydration details.

The problem – despite pivotal advances (instrumentation, perdeuteration), requirements for **protein crystal volume** heavily restrict access to the range of biological problems for neutron crystallography.

- Ashley Jordan and Trevor Forsyth: ILL Life Sciences Group, Grenoble
- Marialucia Longo and Tobias Schrader: Juelich
- Zoe Fisher, ESS, Lund

WP6 Highlights ESS

Phase diagram mapping – optimization, scale-up

b) Microbatch crystallization

- Set up *phase diagram* for the "best" conditions and systematically explore pH, [protein], [ppt] in 6 µL drops
- HD & SD VD, batch (dialysis failed)
- BEST: 25% PEG 3350, 0.2 M Na acetate, 100 mM Tris pH 8.5
- Scale up to 24, 50, 150 μL
- Additives had to be adjusted in largest volumes (!)

WP6 Highlights ESS

WP6 Highlights – dissemination & impact

Deuteration of human carbonic anhydrase for neutron crystallography: Cell culture media, protein thermostability, and crystallization behavior

K. Koruza", B. Lafumat", Á. Végvári^b, W. Knecht^{*}, S.Z. Fisher^{1,1,*}

⁶ Department of Rodge & Lood Process Production Highers, Lood Observeity, Billington 35, Lond XDAG, Docker ¹⁰ Department of Modula Unitariany & Registrics, Kardinaka Juntus, Sahada ruga 2, Sociobini 17277, Society ¹⁰ Scientific Archives Diskins, Biospeed Registrics Society (Boy Consultant Vice), and 2016, Society ¹⁰ Scientific Archives Diskins, Biospeed Registrics Society (Boy Consultant Vice), and S2016, Society ¹⁰ Scientific Archives Diskins, Biospeed Registrics Society (Boy Consultant Vice), and S2016, Society ¹⁰ Scientific Archives Diskins, Biospeed Registrics Society (Boy Consultant Vice), and S2016, Society ¹⁰ Scientific Archives Diskins, Biospeed Registrics Diskins (Boy Consultant Vice), and ¹⁰ Scientific Archives Diskins, Science Disk

MDPI

Article From Initial Hit to Crystal Optimization with Microseeding of Human Carbonic Anhydrase IX—A Case Study for Neutron Protein Crystallography

Katarina Koruza^{1,a}⁽⁰⁾, Bénédicte Lafumat¹, Maria Nyblom¹, Wolfgang Knecht¹ and Zoë Fisher^{1,2,a}

Koruza, K., Lafumat, B., Nyblom, M., Mahon, B.P., Knecht, W., McKenna, R., Fisher, S.Z. (2019) "Structural comparison of protiated, H/D exchanged, and deuterated human carbonic anhydrase IX" – *submitted*

Jordan, A., Devos, J. Mossou, E., Bowler, M., Schrader T., Forsyth, V.T. Forsyth, The use of high magnetic fields for large protein crystal growth and microcrystal alignment in neutron crystallography. J. Appl. Cryst. (In prep)

Journal of Structural Biology Available online 11 January 2019 In Press, Accepted Manuscript (2)

Using neutron crystallography to elucidate the basis of selective inhibition of carbonic anhydrase by saccharin and a derivative

Katarina Koruza ", Brian P, Mahon ¹, ¹, Matthew P, Blakeley ¹, Andreas Ostermann ⁴, Tobias E, Schrader ^{*}, Robert McKenna ¹, Wolfgang Knecht ^a P, ^{ca}, S, Zoë Fisher ^a, ⁹

E Show more

https://doi.org/10.1016/j.pib.2018.12.009 Under a Creative Commons Idense Get rights and content open access

Jordan, A., et al, Meth. Enzym. (in prep).