

McStas-MCNP interface solutions

<u>Erik B Knudsen^{1,}</u> Peter Willendrup^{1,2}, Esben Klinkby^{3,4}

¹NEXMAP, Physics Department, Technical University of Denmark, Denmark
²ESS Data Management & Software Center, Denmark
³Center for Nuclear Technologies, Technical University of Denmark, Denmark
⁴ESS Neutronics Group, Sweden

MCNPX

- Monte Carlo neutron ray tracing engine
- Release 1.1 (1.2 beta available for linux)
- Portable code (Unix/Linux/Mac/Windows, 32 and 64 bit support) Has run on all from iPhone to 1000+ node clusters (inlucding FERMI)

Project website at http://www.mcstas.org

Project mailing list at mcstas-users@mcxtrace.org

- GPL-license
- DSL / Compiler Technology. Using Lex & Yacc
- Modular Open Structure.

Components/devices written in structured ISO-c automatically fits in the system

- Dependencies: c-compiler (perl/tk for gui).
- Permanent staff at DTU Physics maintaining the code

McStas overview

NEUTRON STATE (x, y, z, v_x , v_y , v_z , t, s_x , s_y , s_z , p)

- ONLY neutrons
- Validity determined by the code in the components.
- (Epi)Thermal to cold neutrons
 - No high energy stuff
- Structured materials

- Distributed "Freely" by RSICC.
- Source code available.
- Restrictive licensing-terms.
- Parallelism through MPI: MCNP6/MCNPx (most functionality)

• Not restricted to neutrons (MCNPx / MCNP6)

NEUTRON STATE $(x, y, z, v_x, v_y, v_z, t, p)$

- Materials: Everything is a gas
- E < 150 MeV
- Sense of p slightly different: p<1
- Particle conversions possible

Examples

tofsampl [TOF_samp.txt]

Time-of-flight monitor

9

- ISIS_moderator
- SNS_source
- ESS_moderator/butterfly

 Tallys and Fits (traditional, typically uniform emission same spectrum everywhere)
Ptrac-files
Combined compilation
SSW/SSR
....

Fits and functions

•

٠

•

•

- MCNPx outputs an ascii file containing neutron states.
- This file may be read by McStas MCNP_virtual_input

• Fast

- No reentry
- No MPI
- Large ascii files ~.2kB/event
- Only 1 ptrac surface allowed

Ptrac format

	3000 2	1	0 179	9	
	100 2	0			
	0.00000E+0	0 0.2	8640E+0	0	
	0.43531E+00	-0.10	000E+01		
	0.00000E+00	0.000	00E+00		
	0.10000E+00	0.100	000E+01		
	0.33356E-02				
	3000	3	110	179	
	10 2	0			
	-0.20000E+00 0.28640E+00				
	0.43531E+00	-0.10	000E+01		
	0.00000E+00	0.000	00E+00		
	0.10000E+00	0.100	000E+01		
	0.40028E-02				
	3000	4	120	179	
	100 2	0			
-0.40000E+00 0.28640E+00					
	0.43531E+00	-0.10	000E+01		
	0.00000E+00	0.000	000E+00		
	0.10000E+00	0.100	000E+01		
	0.46699E-02				
	3000	5	130	179	

Source Surface Write/Read in MCNP stops/starts simulations at a given logical point.

Neutron state is written to a binary file

McStas Components: MCNP_Virtual_ss_Input & MCNP_Virtual_ss_Output

Combined compilation

- McStas entry surface defined in MCNPx
- Neutrons crossing the surface trigger
- a McStas simulation.
- Upon reentry the neutron state is updated.

- Flexible
 - Access to full McStas functionality
 - Access to full MCNPx functionality
- Reentrant

2

- Slow
- Requires MCNP source code
- Licensing Issues
- Not al all user-friendly

PROTOTYPE Exists for MCNPx

16 [1] E. Klinkby et al. 'Interfacing MCNPX and McStas for simulation of neutron transport.' Nucl. Instr & Meth A , 700: p106, 2013.

I. Neutrons generated with MCNPX
II. Handed to McStas through SSW interface [1]
→ III.Unreflected neutrons returned to MCNPX for dose-rate calculation

At each scattering:

Incomming state: $n_{in} = (\mathbf{x}, \mathbf{v}_{in}, t, \mathbf{w}_{in})$ Transmitted state: $n_{trans} = (\mathbf{x}, \mathbf{v}_{in}, t, \mathbf{w}_{trans})$ Reflected state: $n_{refl} = (\mathbf{x}, \mathbf{v}_{out}, t, \mathbf{w}_{in}, \mathbf{w}_{in})$

5

Straight guide

Curved guide (r_{curvature}=1500m)

 Dose-rates, measured 5cm in the steel converted from flux according to official Swedish radiation protection procedures

Goal: Signal to Noise

Goal: Signal to Noise

NONE OF THE ABOVE

Next talk by Thomas Kittelmann