

WP 9 Instrumentation: Detectors

Bilbao 29 May 2019

Nigel Rhodes, STFC

1. Objectives

AIMS

Develop neutron detectors for reflectometry applications relevant to the ESS

- Spatial resolution 1 3 mm
- Time resolution better than 100 μs
- Local instantaneous rate capability of several kHz/mm²

Evaluation of the latest silicon PMs and devices for MuSR, particularly with regard to rate capability and fast timing applications

TASKS

- Task 9.1: Involvement of industry and the wider European neutron and muon detector communities in detector development
- Task 9.2: Development of scintillation detectors with high rate capability for reflectometery
- Task 9.3: 3He based microstrip gas chamber with a novel 2D readout
- Task 9.4: Emergent Detector Technologies for neutron scattering and muon spectroscopy
- **Task 9.4.5: Single neutron detection in scintillators using CMOS cameras**

TASK 9.1:

Involvement of industry and the wider European neutron and muon detector communities in detector development (All)

- Invite manufacturers of critical detector componenents to selected RTD meetings
- Invite would-be manufactureres of detectors to selected RTD meetings
 Stimulate transfer of detector requirements to industry

First extended RTD meeting in 13-14 June 2017 - Deliverable 9.1 Representatives from 6 companies attended - KPI W9.1 A mixture of firms building detectors and building components for detectors

Invite detector personnel from groups outside RTD to participate in RTD meetings
 Promotes exchange and disemmination of information

UMB and ENEA have given invited talks at the Abingdon RTD meeting Prof. Paulo Fonte gave an excellent overview of RPC detectors at the Coimbra meeting UMB and JCNS gave invited talks at the PSI RTD meeting SINE 2020 WP9 talks embedded in Position Sensitive Detector Workshop May 2018 at Juelich Representatives from 7 companies exhibited and others attended

TASK 9.2:

Development of scintillation detectors with high rate capability for reflectometry

9.2.1 ZnS scintillation detector with WLS fibre readout (STFC)

192 PMT pixels, but most of the data goes into just two PMT pixels

Distribute data high intensity data across all PMTs rather than just a few Adjacent horizontal and vertical pixels deliberately coded to different PMTs

0.7 mm² resolution Need to eliminate ghosting

4096 pixels 0.5 x 0.5 mm² First detector hardware Deliverable 9.1

9.2.1 ZnS scintillation detector with WLS fibre readout (STFC)

Focusing guides are increasing the required detector width 60 – 450 mm

Can improve count rate capability by course pixelation in width

SHARD2 Detector: Segmented high aspect ratio 2D 4 x 64 element detector into one 64 channel PMT Segmentation works well,, but code not optimised. Still Ghosting

High rate region – low code Low rate regions – high code Optical separators to limit cross talk

No Ghosting

~ 1mm resolution

~ 0.6 mm resolution

	Requirements	SHARD2
Neutron Detection Efficiency	40% at 1.8 A	45% (0.25mm front scint) 60% (0.45mm front scint) at 1.8 Å
Gamma Sensitivity	10 ⁻⁶ at 1MeV	3 x 10 ⁻⁷ at 1MeV
Position Resolution	1-3 mm	0.6 mm
Timing Resolution	- 100 μs	10 µs
Rate Capability	(several) kcps/mm ²	1 kcps/mm²
Placement Accuracy	99.99 %	99•9 9%

9.2.2 Scintillation detector with direct PMT readout (FZJ)

Use of Li glass scintillator drectly coupled to PMT for high light collection

64 channel H8500 PMT gives 6 x 6 mm intrinsic resolution

Transparent scintillator grooved and grooves filled with reflector

Rosmap electronics used for initial evaluation

Fast electronics system now developed

High Rate Mode 250 kHz / mod 125 kHz per pixel 6 x 6 mm² resln.

Screenshot of the readout and control Software for the Detector Module and a pulse height spectra

Empty beam; no sample; open thresholds to be used for calibration Module fitted with Anger Camera Electronics for High Resolution

Neutron Measurements at TREFF and at KWS-3

Thin Cd and Boron Carbide Diaphragm in front of the detector. Hole size 0.5; 1.0; 2.0 and 4 mm with 10 mm spacing => Spatial resolution < 0.7 mm FWHM

6 mm PMT pixels giving sub mm resolution

TASK 9.3:

Development of a 3He based microstrip gas chamber with a novel 2D readout (ILL) The microstrip gas chamber is intrinsically a 1D position sensitive device The aim is to make it 2D position sensitive by laying down resistive cathodes

015167 19900_8_9CH_1550_01000/900(0100

Active area 64 x 76 mm²

Wire bonding of anodes solved sparking issue

Uniform response after calibration

Good resolution. 1 mm x 1.2 mm. Charge division on cathodes works!!!

Count rate and shrinkage at high gain is being investigated

Attributed to ion back flow

Plan B: Applied the trench-MWPC technique (introduced for the XtremeD project) to SINE2020

The trench MWPC shows a similar dependance of the gain versus and shrinkage vs Flux.

This work is giving a better understanding of what is happening in gas detectors

However, since it can be operated at a gain 10 times lower than the MSGC, we expect a local counting rate of 10 kHz/mm² instead of 1 kHz at similar drift field

TASK 9.4:

Emergent Detector Technologies for neutron scattering and MuSR

- **9.4.1** ¹⁰B₄C coated Resistive Plate Chambers for Position Sensitive Neutron Detectors
- **9.4.2** Silicon Photomultipliers for Neutron scattering
- **9.4.3** Silicon Photomultipliers for MuSR
- 9.4.4 Micromegas detectors

Irina Stefanescu et al. (EDG) keep us up to date with progress at the ESS

Particularly with regard to the detector development and the ESS detector performance requirements

¹⁰B₄C coatings for tasks 9.4.1. and 9.4.4 carried out at ESS

Task 9.4.1 Development of neutron sensitive resistive plate chamber (RPC) (LIP)

Argo Tibet 6700 m²

CMS Trigger 2953 m²

Task 9.4.1 Development of neutron sensitive resistive plate chamber (RPC)

Active area 70 x 70 mm²

Tested at TREFF FRM II

Efficiency 12.5% at 4.7Å

Resolution 236 µm FWHM

10 double gap RPCs 23 µm ¹⁰B₄C

¹⁰B₄C coatings provided by the ESS

Efficiency 60% at 4.7Å

Resolution ~300 µm FWHM

Double-gap ¹⁰B-RPC: sensitivity to gamma rays

Double-gap ¹⁰B-RPC: sensitivity to gamma rays

MC Simulations

- Geant4 10.5.1 with QGSP-BERT-HP reference physics list
- Tests with other relevant physics lists (QGSP-BIC-HP and QGSP-BIC-AllHP): showed nearly identical results

Detector model

- Double-gap ¹⁰B-RPC inside in an Al box
- Al-cathode coated (both sides) with 1.15 um thick ¹⁰B₄C layer (97% enrichment)
- Area:10x10 cm²

Two RPC designs were simulated

	Original	Modified
Gas-gap width	0.35 mm	0.2 mm
AI plate thickness	0.5 mm	0.3 mm
Glass plate thickness	0.5 mm	0.25 mm

Further reduction of x8 with new design

0.45 mm

2.4 mm

Task 9.4.2 Development of SiPM based detectors for neutron scattering

- ZnS:⁶LiF detection unit
 - sensitive area (2.4×200) mm²
 - neutron screen ND2:1 (Scintacor)
- WLS fibre
 - □ Ø = 0.25 mm
 - attenuation length ≈ 19 cm fibre core doped with 2wt% PMMA
 - each fibre verified before assembly
 - \rightarrow uniform attenuation length over length
 - \rightarrow all have same attenuation length

Light sharing detector

fast amplifier

*** * * ***

Task 9.4.2 Development of SiPM based detectors for neutron scattering (PSI)

 Spatial resolution and trigger efficiency as a function of the position, measured up to a trigger rate of ~3 kHz

Performance parameters at a trigger threshold of 150 mV

Trigger efficiency $\epsilon_{\rm trigger}$	$70\% < \epsilon_{trigger} < 90\%$			
Spatial resolution, FWHM	1.5 cm < FWHM < 2.3 cm			
Gamma sensitivity (⁶⁰ Co)	< 3 · 10 ⁷			
Quiet background rate	< 3 · 10 ⁻³ Hz			

Silicon photomultipliers for muon spectroscopy

• Task 9.4.3 Silicon Photomultipliers and other scintillation readout devices for μSR (STFC)

First half of the task has concentrated on SiPMs

Systematic testing of emerging commercial SiPMs D9.8, M 24 (new series every few months)

Continuous source requires excellent timing resolution

Pulsed source requires excellent dead time (many positrons per detector per pulse)

Three pronged approach

Testing of scintillation detector with SiPM on muon beam line

Testing of SiPM with laser response

Modeling of detector response

Multianode Photomultipliers Tubes for muon spectroscopy

• Timing resolution

Normally timing resolution for MuSR at ISIS is dominated by width of proton pulse

Super MuSR with pulse slicer will require higher timing resolution $\sim 2 - 4$ ns.

Measured timing resolution of PMT, fibre and scintillator – OK for small signals

Amplitude	dt_{PMT}	dt _{Fiber}	dt _{Scintillator}	dt
<u>60mV</u>	0.1944 ns	0.981 ns	1.1395 ns	<u>1.52 ns</u>
<u>100mV</u>	0.1474 ns	0.735 ns	0.7892 ns	<u>1.09 ns</u>

• 3 pixel module installed on EMU

Gives similar rate capabilities compared with EMU's SA PMTs and adiabatic light guides

• Lab tests

PMT pixels illuminated simultaneously show signal degradation Julich have also seen this and suggest it might be an issue with the PMT VDN

Hope to build a 64 channel demonstrator by end of SINE 2020

- Task 9.4.3 Other readout devices for μSR (STFC)
- Evaluating a GEM detector for MuSR at ISIS

Triple GEM detector purchased from CERN

Efficiency

Resonance Frequency Expts

Initial results look encouraging:

Task 9.4.4 Development of Micromegas Detectors for neutron scattering (CEA) Micromegas detectors are one of the family of micro pattern gas detectors

Drift electrode and grid coated with ¹⁰B₄C

No PCB layer in microbulk detector

Allows stacking

Stack of 4 pairs of micromegas detectors

Simulations show 40% efficiency at 1.8 Å

Mean 0.000 RMS 0.000

Prototype 15 x 15 cm² detector waiting for coatings

Task 9.4.4 Development of Micromegas Detectors for neutron scattering (CEA)

Initial trials of coating B₄C onto the Cu coated kapton foil failed

Investigations are ongoing with ESS-Linkopin, CDT and at Scalay to resolve this issue

In the meantime inserting a Cu coated Kapton foil into a bulk micromegas detector has been shown to improve electron transmission simulations and improve pulse height spectra in a real detector Number of Counts

Garfield/neBEM simulations of the electron transmission

Pulse Height (Channels Number)

Task 9.4.5: Single neutron detection in scintillators using CMOS cameras (ESSBilbao)

sCMOS cameras are being rapidy developed by industry

Imagined that in the near future they will have sufficent timing resolution for ToF neutron applications

ESSBilbao looking at possibility of detecting individual neutrons.

Use state of the art Hamamatsu camera Start with ZnS/6LiF scintillator Identify suitable lens and optical set up Identify siutable image processing for neutron identification Ensure count rate is kept below limit event superposition on image. Tests to date have been carried out at ILL and PSI Will report findings into D12 at end of project

Apologies for lack of pictures

WP 9: DELIVERABLES

No.	Deliverable Title	LEAD	ΤΥΡΕ	DOMAIN	DUE(M)	STATUS
9.1	First extended RTD meeting	STFC	DEC	PU	18	+3 Complete
9.2	Initial WLS fibre detector hardware	STFC	DEM	PU	18	Complete
9.3	Initial direct PMT readout hardware	FZJ	DEM	PU	24	Complete
9.4	Interim report on scintillation detector development programme	STFC	R	PU	24	Complete
9.5	Novel MSGC detector hardware	ILL	DEM	PU	24	Complete
9.6	Interim report on MSGC detector development programme	ILL	R	PU	24	Complete
9.7	Interim report on Emergent Neutron Detector Technologies development programme	ESS	R	PU	24	Complete
9.8	Report discussing an evaluation of commercial SiPMs for µSR detector arrays	STFC	R	PU	24	Complete
9.9	Second extended RTD meeting	STFC	DEC	PU	36	
9.10	Final report on scintillation detector development programme	STFC	R	PU	48	
9.11	Final report on MSGC detector development programme	ILL	R	PU	48	
9.12	Final report on Emergent Neutron Detector Technologies development programme	ESS	R	PU	48	
9.13	Report discussing alternative detector technologies for μSR	STFC	R	PU	48	
9.14	Website containing all presentations	STFC	DEC	PU	48	

WP 9: DELIVERABLES

ZnS +WLSF + MaPMT

10B RPC

GS20 + MaPMT (Anger)

Different detector technologies developed in SINE 2020 for neutron reflectometry and MuSR applications

Plastic Scint + SiPM/MaPMT (µ)

3He + 2D MSGC

10B Micromegas

GEM (µ)

ZnS +WLSF + SiPM

ZnS + CMOS Camera