

WP 9 Instrumentation: Detectors

Parma 6 June 2018

Nigel Rhodes, STFC

AIMS

Develop neutron detectors for reflectometry applications relevant to the ESS

- Spatial resolution 1 3 mm
- Time resolution better than 100 μs
- Local instantaneous rate capability of several kHz/mm²

Evaluation of the latest silicon PMs and devices for MuSR, particularly with regard to rate capability and fast timing applications

TASKS

- Task 9.1: Involvement of industry and the wider European neutron and muon detector communities in detector development
- Task 9.2: Development of scintillation detectors with high rate capability for reflectometery
- Task 9.3: 3He based microstrip gas chamber with a novel 2D readout
- Task 9.4: Emergent Detector Technologies for neutron scattering and muon spectroscopy

TASK 9.1:

Involvement of industry and the wider European neutron and muon detector communities in detector development (All)

- Invite manufacturers of critical detector componenents to selected RTD meetings
- Invite would-be manufactureres of detectors to selected RTD meetings
 Stimulate transfer of detector requirements to industry

First extended RTD meeting in 13-14 June 2017 - Deliverable 9.1 Representatives from 6 companies attended - KPI W9.1 A mixture of firms building detectors and building components for detectors

Invite detector personnel from groups outside RTD to participate in RTD meetings
 Promotes exchange and disemmination of information

UMB and ENEA have given invited talks at the Abingdon RTD meeting Prof. Paulo Fonte gave an excellent overview of RPC detectors at the Coimbra meeting UMB and JCNS gave invited talks at the PSI RTD meeting SINE 2020 WP9 talks embedded in Position Sensitive Detector Workshop May 2018 at Juelich Representatives from 7 companies exhibited and others attended

TASK 9.2:

Development of scintillation detectors with high rate capability for reflectometry

9.2.1 ZnS scintillation detector with WLS fibre readout (STFC)

192 PMT pixels, but most of the data goes into just two PMT pixels

Distribute data high intensity data across all PMTs rather than just a few Adjacent horizontal and vertical pixels deliberately coded to different PMTs

0.7 mm² resolution
 Need to eliminate
 ghosting

4096 pixels 0.5 x 0.5 mm² First detector hardware Deliverable 9.1

9.2.1 ZnS scintillation detector with WLS fibre readout (STFC)

Focusing guides are dramatically increasing the required detector width 60 – 600 mm

Beam diverges over a large area

Can improve count rate capability by course pixelation in width

SHARD 2 Detector: 12 x 256 elements into twelve 64 channel PMTs

SHARD Detector: Segmented high aspect ratio 2D 4 x 64 element detector into one 64 channel PMT

1 mm position resolution at present Working on interpolation for the future

9.2.2 Scintillation detector with direct PMT readout (FZJ)

Use of Li glass scintillator drectly coupled to PMT for high light collection

64 channel H8500 PMT gives 6 x 6 mm intrinsic resolution

Transparent scintillator grooved and grooves filled with reflector

Rosmap electronics used for initial evaluation

Fast electronics system now developed

High Rate Mode 250 kHz / mod 125 kHz per pixel 6 x 6 mm² resln. Screenshot of the readout and control Software for the Detector Module and a pulse height spectra

TASK 9.3:

Development of a 3He based microstrip gas chamber with a novel 2D readout (ILL) The microstrip gas chamber is intrinsically a 1D position sensitive device The aim is to make it 2D position sensitive by laying down resistive cathodes

Active area 64 x 76 mm²

Wire bonding of anodes solved sparking issue

Good resolution. 1 mm x 1.2 mm. Charge division on cathodes works!!!

amplitude (V)

anode

HV anodes : 1800 V

charge division vs charge

cathode

Mean y 0.5405 Std Dev x 1.082 Std Dev y 0.05614

15 mm

Count rate issue at high gain is being investigated

TASK 9.4:

Emergent Detector Technologies for neutron scattering and MuSR

- **9.4.1** ¹⁰B₄C coated Resistive Plate Chambers for Position Sensitive Neutron Detectors
- **9.4.2** Silicon Photomultipliers for Neutron scattering
- **9.4.3** Silicon Photomultipliers for MuSR
- 9.4.4 Micromegas detectors

Irina Stefanescu et al. (EDG) keep us up to date with progress at the ESS

Particularly with regard to the detector development and the ESS detector performance requirements

¹⁰B₄C coatings for tasks 9.4.1. and 9.4.4 carried out at ESS

Task 9.4.1 Development of neutron sensitive resistive plate chamber (RPC) (LIP)

experiments

Argo Tibet 6700 m²

CMS Trigger 2953 m²

Task 9.4.1 Development of neutron sensitive resistive plate chamber (RPC)

Active area 70 x 70 mm²

Tested at TREFF FRM II

Efficiency 12.5% at 4.7Å

Resolution 236 µm FWHM

10 double gap RPCs 23 µm ¹⁰B₄C

¹⁰B₄C coatings provided by the ESS

Efficiency 60% at 4.7Å

Resolution ~300 µm FWHM

0.45 mm

2.4 mm

վոկ

Task 9.4.2 Development of SiPM based detectors for neutron scattering

- ZnS:⁶LiF detection unit
 - sensitive area (2.4×200) mm²
 - neutron screen ND2:1 (Scintacor)
- WLS fibre
 - □ Ø = 0.25 mm
 - attenuation length ≈ 19 cm fibre core doped with 2wt% PMMA
 - each fibre verified before assembly
 - \rightarrow uniform attenuation length over length
 - \rightarrow all have same attenuation length

Light sharing detector

* * * * * * * * *

Task 9.4.2 Development of SiPM based detectors for neutron scattering (PSI)

 Spatial resolution and trigger efficiency as a function of the position, measured up to a trigger rate of ~3 kHz

Performance parameters at a trigger threshold of 150 mV

Trigger efficiency $\epsilon_{\rm trigger}$	70% < $\varepsilon_{trigger}$ < 90%			
Spatial resolution, FWHM	1.5 cm < FWHM < 2.3 cm			
Gamma sensitivity (⁶⁰ Co)	< 3 · 10 ⁷			
Quiet background rate	< 3 · 10 ⁻³ Hz			

• Task 9.4.3 Silicon Photomultipliers and other scintillation readout devices for μSR (STFC)

First half of the task has concentrated on SiPMs

Systematic testing of emerging commercial SiPMs D9.8, M 24 (new series every few months)

Continuous source requires excellent timing resolution

Pulsed source requires excellent dead time (many positrons per detector per pulse)

Three pronged approach

Testing of scintillation detector with SiPM on muon beam line

Testing of SiPM with laser response

Modeling of detector response

300

-

S

Counts (Frames

sn₁ 200

WP 9: Task 9.4.3

- Task 9.4.3 Other readout devices for μSR (STFC)
- Evaluating a GEM detector for MuSR at ISIS

Triple GEM detector purchased from CERN

• 53.6kV/cm

• 55.0kV/cm

10

HIFI

Resonance Frequency Expts

Time (µs)

HIFI00130331; Group; gem; Asym;

HIFI00130331; Group; hifi; Asym;

0.2

Asymmetry

-0.2

Electronics Noise

Initial results look encouraging:

Time of Flight (us)

Next evaluate other electronics and other MPGDs

This project is funded by the European Union (GA no. 654000)

5

Task 9.4.4 Development of Micromegas Detectors for neutron scattering (CEA) Micromegas detectors are one of the family of micro pattern gas detectors

Drift electrode and grid coated with ¹⁰B₄C

No PCB layer in microbulk detector

Allows stacking

Stack of 4 pairs of micromegas detectors

Prototype 15 x 15 cm² detector waiting for coatings

Simulations show 40% efficiency at 1.8 Å

Task 9.4.4 Development of Micromegas Detectors for neutron scattering (CEA)

Initial trials of coating B₄C onto the Cu coated kapton foil failed

Investigations are ongoing with ESS-Linkopin, CDT and at Scalay to resolve this issue

In the meantime inserting a Cu coated Kapton foil into a bulk micromegas detector has been shown to improve electron transmission simulations and improve pulse height spectra in a real detector Number of Counts

Garfield/neBEM simulations of the electron transmission

Pulse Height (Channels Number)

WP 9: DELIVERABLES

No.	Deliverable Title	LEAD	ТҮРЕ	DOMAIN	DUE(M)	STATUS
9.1	First extended RTD meeting	STFC	DEC	PU	18	+3 Complete
9.2	Initial WLS fibre detector hardware	STFC	DEM	PU	18	Complete
9.3	Initial direct PMT readout hardware	FZJ	DEM	PU	24	Complete
9.4	Interim report on scintillation detector development programme	STFC	R	PU	24	Complete
9.5	Novel MSGC detector hardware	ILL	DEM	PU	24	Complete
9.6	Interim report on MSGC detector development programme	ILL	R	PU	24	Complete
9.7	Interim report on Emergent Neutron Detector Technologies development programme	ESS	R	PU	24	Complete
9.8	Report discussing an evaluation of commercial SiPMs for µSR detector arrays	STFC	R	PU	24	Complete
9.9	Second extended RTD meeting	STFC	DEC	PU	36	
9.10	Final report on scintillation detector development programme	STFC	R	PU	48	
9.11	Final report on MSGC detector development programme	ILL	R	PU	48	
9.12	Final report on Emergent Neutron Detector Technologies development programme	ESS	R	PU	48	
9.13	Report discussing alternative detector technologies for μSR	STFC	R	PU	48	
9.14	Website containing all presentations	STFC	DEC	PU	48	