- Work Package 9.4:
 - Emergent Detector Technologies for neutron scattering and muon spectroscopy
 - Sub Task 3: Silicon photomultipliers for muon spectroscopy

Silicon photomultipliers: Dead-time characteristics for high count rate application

Daniel Pooley Steve Cottrell Peter Baker Zi-Wen Pan (Vincent) Luca Pollastri Myron Huzan Lakshan Ram Mohan

STFC Rutherford Appleton Laboratory, UK

Science & Technology Facilities Council

The Experiment... ... count positron arrival time

... in a symmetric geometry

Scintillation (BC408) Detectors

Count rate: A Limiting Factor

40Hz Spallation generates *high instantaneous rate...*

Not only are there 1000's of muons per frame, they are most *likely* to be at the *start of a frame*!

Application: MuSR -> Super_MuSR 64 detectors to 1216 detectors.

Courtesy: P. Baker, R. Afonso, P. Singkanipa

SiPM Recap

The Unique Character of SiPMs

- Silicon Photomultiplier (SiPM) is a Multi-Pixel Photon Detector
- Parallel arrangement of GM-APD with each their own quenching resistor
- Each cell gives out a quantised amount of charge

Cell Size # Cells 20um= 10998 50um= 2668

Examples from our investigations

Comprehensive evaluation of SiPMs:

MuSR Beamline

 Detector chain can be investigated in a realistic environment.

Optical Investigation

 Photon flux accurately parameterised within a controlled environment.

Monte Carlo Simulation

 Accurately simulate a statistical investigation in detector performance.

Example optical investigation: Cells Discharged

Brightness of flashing diode [arb. units]

Project Conclusions:

- Improved photon collection efficiency = diminishing returns
- Not all SiPMs can be 100% discharged
- Can be modelled or directly calculated (balls in boxes)

Monte-Carlo Simulation Example: SensL 50µm with Pole-Zero

- Signal processing essential to achieve more than 10 c/frame
- Gains in count rate capability below 20% cells discharges

M Huzan

MuSR Experimental Data

SiPM

SensL MFJ-30035 Fast

SensL MFJ-30035 Slow

Hamamatsu S13360-3050CS

SensL MFC-30050 Slow

SensL MFC-30050 Fast

Hamamatsu S13360-3050CS

Example: Beam Data Parameterisation

In the later part of the data set dead-time effects are assumed to be negligible.

- This region is fitted with an exponent with fixed decay constant and extrapolated back to earlier times.
- Each data point from the measured data set can be plotted against its counter part from the predicted data set.

L R Mohan

Example: Compare in-silicon Vs external signal conditioning

Project Conclusions:

- Signal processing can be either in-silicon (Sensl Fast) or via pole-zero electronics
- SiPM shows minimal dead time distortion at same rates as PMT

L R Mohan

Next steps: Demo detector module on EMU Spectrometer

EMU Spectrometer

Simulation of reflectors and light collection

Investigate reflectors, fibre number, and homogeneity.

Material	Refractive	Bulk absorption	Wave length of maximum	Light yield	Decay	Rise time / ns
	index	length / cm	emission / nm	Counts/MeV	time / ns	
BC408	1.58	380	425	10000	2.1	0.9
Air	1.0	Very long (1000m)	-	-	-	-
BC600	1.56	12.5	-	-	-	-
grease	1.47	20	-	-	-	-
BCF-92	1.59	3.5	492	-	2.7	-
Fibre clad	1.49	3.5	-	-	-	-Zi-Wen Pan

Light collection: fibre number

Going from 2 to 1 fibres $\sim -25\%$

Zi-Wen Pan

Light collection: reflector type

Going from PTFE ~ 10%

Zi-Wen Pan

Light collection: beam position/flood

Pencil beam to flood beam – broadening $\sim x2$ but also brings in edge effects and glancing paths.

Zi-Wen Pan

Testing and Prototyping

- Bend radius, potting method, reflector type etc. are under evaluation
- Favourite for building ease: PTFE, 1 fibre at ~15mm radius.

Current direction

- PTFE wins in simulation but require confirmation.
- Using PTFE very attractive due to assembly ease
- Can we take 30% fewer photons by using 1 fibre. Signal band moves to 500 photons but need to account for QE of detector. SiPM – single, double..10x photon noise. Could be okay.
- Testing in June cycles.

Thank you, Questions?

Performance Parameters

	Today	Proposed	Benefit
Detectors	64	~1216	20x data rate
Muons admitted	8%	100%	Best use of larger samples
Solid angle coverage	40%	75%	Best use of muons on sample
Zero field data quality (a ₀ ² * rate)	4.7	95 (full pulse) 6.3 (10ns)	Higher quality data
Maximum frequency (field)	8 MHz 0.06T	~80 MHz ~0.6T	Enables experiments not previously done at ISIS
Spin rotation	None	60°	Higher field TF measurements
Maximum field	0.35T	0.65T	Broader range of experiments

Courtesy: P. Baker, R. Afonso, P. Singkanipa

The µSR technique...

High energy protons (800 MeV at ISIS)

Stop in sample, (stopped in ~1mm water)

Stop as μ⁺ or Muonium (Mu: μ⁺e⁻)

 $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ 4 MeV **muons** are **100% spin polarised** spin ½, mass 0.11m_p

Decay, lifetime ~2.2 μ s $\mu^+ \rightarrow e^+ + v_e^- + v_\mu^-$ **Detect Positrons**

Positrons preferentially emitted in direction of muon spin

Simulation of reflectors and light collection

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 70, NO. 3, R20E3012

Reflectivity Spectra for Commonly Used Reflectors

Martin Janecek

TABLE I EXAMINED REFLECTORS

Reflector	Refl. Coeff. @ 440nm	Thickness [mm]	s Source	Refl. Ref.
SRS-99 (White Standard)	0.988	10	Labsphere, Inc. North Sutton, NH	company*
Spectralon (WS-1-LS)	0.993	10	Ocean Optics, Inc. Dunedin, FL	company*
Teflon [®] tape (matte)	0.99	n x 0.06	ACE Hardware Oak Brook, IL	[18-20]
PTFE tape (glossy)	0.99	n x 0.08	unknown origin	[18-20]
Tetratex [®] film (matte)	0.99	<i>n</i> x 0.16	Tetratec [™] Corp. Feasterville, PA	[18-20]
Titanium dioxide paint	0.955	0.14-0.18	Saint-Gobain Hiram, OH	company*
Magnesium oxide	0.98	1.0	Mallinckrodt, Inc. Paris, KY	[11, 15]
GORE [®] diffuse reflector	r 0.99	0.50	WLGore & Associates, In Newark, DE	^c company*
Nitrocellulose	1.02^{+}	0.12	Advantec MFS, Inc Dublin, CA	. measured
Lumirror®	0.98	0.24	Toray, Japan	[7]
Melinex®	0.98	0.125	Dupont [™] Wilmington, DE	[7]
Tyvek [®] paper	0.97	<i>n</i> x 0.11	Dupont [™] Wilmington, DE	[7]
ESR film	0.985	0.065	3M St. Paul, MN	ompany*, [25]
Aluminum foil	0.78	0.025	Kaiser Foil Northbrook, IL	[7]

* the reflection coefficient data provided by the manufacturer were used † the reflection coefficient was measured to be 103% of the reflection coefficient of four layers of ACE Teflon[®] tape at 440nm (i.e., 1.03 x 0.99) [7]

Scoping detector arrays

Detector design	Solid Angle Coverage (%)	Signal collected per muon (ZF, LF)	Signal collected per muon (TF)
2014 instrument (Old beam pipe, Current Degrader Ring)	42	1.00	1.00
2017 instrument (New beam pipe, Current Degrader Ring)	42	1.13	1.07
Cylindrical	75	2.65	3.42
Stepped	63	1.66	2.73
Spherical	78	1.22	3.02

Current

Cylindrical

Stepped

Spherical

Courtesy: P. Baker, R. Afonso, P. Singkanipa

Application if deadtimes are...

... much worse than PMT's

- Niche applications that require compact magnetically insensitive detectors that do not need high count rates.
 - \circ Diagnostic
 - Portable
 - Low count rate (many muon lifetimes later?)

... comparable to PMT's

• Applications that require compact magnetically insensitive detectors and a decent count rate.

E.G HiFi Transverse Field Bank

Apply RF field, rotating muon spin effectively 'beating the timing resolution governed by the pulse width'. Increase frequencies accessible on HiFi- <u>expanded science programme!</u>

... better than PMT's

- Technology uptake with added benefits of magnetic insensitivity and very compact designs.
- New geometries such as directly viewing scintillator possible.
- Achieve higher rates, do muon science faster, better and more efficiently.

Specification: some context

Conclusions

- Photon density (cells fired) is critical to control
- I.E we need to de-convolved the effects of hit fraction, micro cell recovery time and signal processing as a function of rate.

Deadtime- Lets have a look at Signals first

MuSR Beamline Work

Dead-time models

Measured rate as a function of true rate

Parameterising the detector performance using a Figure of Merit with MuSR data

- Intuitive FoM to parameterise the 'missed counts' in a MuSR experiment.
- Moved away from non-extendable dead time model as one dead-time value is not appropriate for SiPM (reported at kick off meeting in Abingdon)
- Encapsulates the operational parameters and usability of the detector. For example, 'any' detector can count at 1 c/f at a pulsed source!
- Based on realistic 'user' experience rather than determining absolute values and comparison to data sheets.

µSR – Asymmetry

Asymmetry = $((Counts \cdot e^{\frac{s}{\mu}})/N_0) - 1$

NOTE- μ SR scientists will run a detector with some deadtime distortion and correct for this if possible. The FoM allows us to compare the rate at which detectors can be run, which is more useful than absolute deadtime numbers.

Example: Hamamatsu SiPM

First Investigations & Prototypes

Signal Characterisation

Optical Characterisation

Electronic Characterisation

Model Energy Deposition

Deadtime Investigation using MuSR Myron Huzan

Although paralyzable model is the appropriate one for partial hit fraction, the way in which dead time is calculated (fitting at late times with known lifetime) this is still a good parameterisation)

Muonium in 20 G Field

Frequency ~5 MHZ - as calculated

- Light Tight box/Faraday Cage
- 4 detectors
- 6 Channels
- Option of including Amplifiers
- Hinges are being replaced with nonmagnetic ones.

Sealed

Example – PMT with WSF tile

Muonium in 20 G Field

Frequency ~5 MHZ - as calculated

SiPM Deadtime Continued

Low hit fraction is giving clear peaks but where to place the discriminator?

Successfully able to make consistent, high quality prototypes for beamline tests

Future Investigations

Applications of µSR ... The muon as a magnetometer

Magnetism

Superconductivity

Ionic Conductors

Probe internal fields:

sensitive to small moments (nuclear and electronic) and spin fluctuations

Applications of µSR ... The muon as an analogue for 'H'

Polaron/Soliton Motion

Molecular Dynamics

Probe for 'hydrogen' states and reactions: sensitive method of studying charge states, dynamics and reactions

Lifetime mapped to rate plot

Solution to Deadtime (1)

Minimise intrinsic detector dead time

- Fastest flurophore
- Direct optical coupling
- Fastest Photo-detector
- Fast TDC/DAE chain

Compromise with many other factors but no one component should be severely limiting

PMT based detector deadtime ~15ns

Solution to Deadtime (2)

Pixelate the detector array

- Dead space
- Difficult assembly

Monte-Carlo Simulation

What is the Deadtime of a SiPM?

Minimal Deadtime

Lowering hit fraction gives reduction in apparent deadtime Long (100's of ns)

Higher hit fraction means deadtime tends toward cell recovery time

Amplifiers (PSI and miniCircuit)

ZX60-14012L+

